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Specific tissue interactions between epithelia and mesenchyme (or stroma), e.g., epithelial-
mesenchymal (or -stromal) interactions mediate crucial aspects of normal development
and tissue regeneration. These events affect tissue induction, organogenesis, cell movement,
and morphogenesis of multicellular structures. Extensive and diverse studies have
established that hepatocyte growth factor (HGF), a ligand for the c-met protooncogene
product of receptor tyrosine kinase, is a mesenchymal- or stromal-derived multipotent
polypeptide which mediates epithelial-mesenchymal interactions. During embryogenesis,
HGF supports organogenesis and morphogenesis of various tissues and organs, including
the liver, kidney, lung, gut, mammary gland, tooth, skeletal system, etc. In adult tissues,
HGF elicits a potent organotrophic function which supports regeneration of organs includ-
ing the liver, kidney, and lung. In the brain, HGF is a new member of the family of
neurotrophic factors. In neoplastic tissue, HGF is involved in tumor invasion and
metastasis, through tumor-stromal interactions. While HGF was originally identified as a
potent mitogen for mature hepatocytes, the biological functions of this factor reach far
beyond the original identifications. Such being the case, use of HGF for purposes of
therapeutics is being given increasing attention.
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Growth factors which share multipotent characteristics
regulating proliferation, motility, and differentiation of
cells are members of critical molecules responsible for
complex biological processes, including embryogenesis,
angiogenesis, tissue regeneration, and malignant transfor-
mation. Hepatocyte growth factor (HGF) was initially
identified in a partially purified form to be a potent mitogen
for mature hepatocytes in primary culture (1-4). HGF was
thereafter completely purified (5-7) and was molecularly
cloned in 1989 (8, 9).

In 1990 to 1991, independent approaches led to isolation
of bioactive molecules using different assay method were
unexpectedly joined upon molecular cloning of factors. The
cloning of cDNAs for scatter factor (10), tumor cytotoxic
factor (11), and fibroblast-derived epithelial growth factor
(12) revealed these molecules to be identical with HGF.
Scatter factor was originally identified as a fibroblast-de-
rived factor which “scatters” tightly growing epithelial cell
colonies (13). Tumor cytotoxic factor proved to be fibro-
blast-derived factor which inhibits growth of certain
species of carcinoma cells (14). In 1991, a fibroblast-de-
rived epithelial morphogen which induces branching tubu-
logenesis in epithelial cells also proved to be HGF (15), and
a natural ligand for the receptor-tyrosine kinase, c-met
protooncogene product was identified as HGF in the same
year (16, 17).

While HGF is a potent hepatotrophic factor responsible
for vigorous regeneration of the liver, it has become a well
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characterized multipotent growth factor which targets a
wide variety of cells (reviewed in Refs. 18-22). HGF has
“trophic” roles for regeneration and maintenance of various
tissues and organs (18, 23). Recent extensive studies on
expression and functional analysis of HGF during embryo-
genesis revealed a distinct aspect of this factor as a
mediator in morphogenic epithelial-mesenchymal interac-
tions essential for organogenesis (24-34). Based on its
potent motogenic (enhancement of cell motility) and angio-
genic activities, it seems clear that HGF is involved in
growth, invasion, and metastasis of tumor cells. In this
review, we will focus on unique multipotent aspects of HGF
as a mediator in specific cell-cell interactions.

Biochemical characteristics of HGF and c-Met

HGF is a heterodimer with a 69 kDa «-chain and a 34
kDa £-chain, linked by a single disulfide bridge (5-7) (Fig.
1). The a-chain contains the N-terminal hairpin structure
and four homologous “kringle domains” and the S-chain has
serine protease-like motif. Thus, HGF has a structural
homology with plasminogen (8, 12, 35-37). But HGF has
no serine protease activity, while plasminogen and its
active form, plasmin share no biological activities of HGF
(8). HGF is translated from a single mRNA, as a single
chain preproHGF. Extracellular processing by specific
serine protease, HGF-activator or HGF-converting enzyme
(38, 39), results in conversion from a biologically inactive
form to active two chain mature HGF.

There are two known distinct forms of naturally occur-
ring variant HGF, biosynthesized through alternative
splicing of pre-mRNA; one form is deleted with 5 amino
acids in the first kringle domain (12, 37) while the other
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form consists of only the N-terminal hairpin domain and
two kringle domains (40, 41). The former has mitogenic
and motogenic activities whereas the latter form has no
mitogenic activity but does have motogenic activity (42,
43). This smaller variant is likely to be a minimum unit for
binding to the c-Met/HGF receptor, with a relatively high-
affinity. In accordance with this, deletion of the N-terminal
hairpin domain, the first kringle domain, or the second
kringle domain in the HGF molecule results in a total loss
of biological activities (43, 44).

The tumorigenic met oncogene was initially isolated
from chemically transformed human osteosarcoma cells.
Although the primary structure of the ¢c-met protooncogene
product predicted it to be a receptor-type tyrosine kinase,
it remained orphan (or lonesome) receptor until two re-
search groups independently identified its natural ligand to
be HGF (16, 17). The c-Met/HGF receptor is heterodimer-
ic molecule composed of a 50 kDa a-chain and a membrane
spanning 145 kDa 8-chain which contains the intracellular
tyrosine kinase domain (45). The Met/HGF receptor, when
autophosphorylated in response to HGF, binds a number of
substrata containing the Src homology region 2 (SH2) do-
mains such as phosphatidylinositol 3-kinase, Grb-2(Ash)/
Sos complex, Ras GTPase activating protein, pp60°7, and
phospholipase C-y (46, 47). These intracellular signaling

K. Matsumoto and T. Nakamura

molecules associate with a docking site of the tandemly
arranged C-terminal tyrosine residues 1349 and 1354.
Mutation of these tyrosine residues results in loss-of-func-
tion mutation (46, 48, 49), while mutation of the juxta-
membrane tyrosine residue suppresses the loss-of-function
mutation of the Met/HGF receptor (49).

While growth factors are often classified into certain
families, based on structural similarity, cDNA encoding an
unique protein with a similar domain structure to HGF was
isolated and the putative protein was termed HGF-like
protein (HLP) (50). HLP was later shown to be an molecule
identical with macrophage stimulating protein (MSP) (51,
52), originally purified from human serum. On the other
hand, the c-Met/HGF receptor has two distinct family
members; Ron and Sea (53, 54). Ron tyrosine kinase was
identified as a specific receptor for HLP/MSP (55-57), but
a ligand for Sea tyrosine kinase remains to be identified

(Fig. 2).

Biological activities

The growth-regulating activity of HGF for various cell
types has been well-characterized, as described in Table I.
HGF has mitogenic activity for epithelial cells (12, 18, 58-
68), endothelial cells (69-71), some stromal cells ( 72-76),
and various species of carcinoma cells (58, 78-82). HGF
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Fig. 1. Schematic structure of
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also has an angiogenic activity when implanted in vivo (70,
71). Recent studies revealed that HGF is also involved in
hematopoiesis (72, 74, 76), chondrogenesis, and bone
remodeling (75, 77). HGF stimulates proliferation of
hematopoietic progenitor cells and enhances the formation
of colonies toward erythroid lineage or granulocyte-ery-
throid-megakaryocyte lineage (72-74, 76). HGF enhances
growth and differentiation of osteoclastic cells at the
terminal stage (77). Articular chondrocytes are target cells
of HGF and HGF mRNA is expressed at presumptive
articular regions during development (75). In vitro and in
vivo studies provided that HGF has anti-tumor activity for
certain species of carcinoma cells, and in particular, growth
of most hepatoma cells is inhibited by HGF (14, 83-85).

Cell movement is an important process during embryo-
genesis, wound healing, and tumor invasion. Although some
growth factors are known to enhance cell motility, HGF is
one of most potent motogens to induce dissociation and cell
movement in various types of cells (Table I) (13, 30, 59,
70, 78, 79, 81, 86-89). The motogenic activity of HGF is
mediated by activation of small GTP-binding proteins,
Rho, Ras, and Rac (90-93). Disruption and regulation of
cell-cell and cell-matrix interactions are related to the
phosphorylation of E-cadherin-associated molecules (5-
catenin, plakoglobin, and p120) (94, 95) and focal adhesion
kinase (pl257**) (88), respectively. HGF also disrupts
intercellular communications mediated by gap junctions
(96, 97).

Among the multipotent characteristics of HGF, the
morphogenic activity is notable and unique. This activity
was initially noted in three-dimensional collagen gel cul-
tures using MDCK cells derived from renal epithelium,
wherein HGF induces branching tubular structures (15).
Induction of similar branching tubules and gland-like
structures in epithelial cells also occurs in other cells,
including cell lines derived from hepatic duct and mam-
mary gland (29, 30, 80). Therefore, HGF is an important
factor regulating morphogenic processes during develop-
ment and tissue reconstruction (see below).

Several ligands for receptor-tyrosine kinases have dis-
tinct neurotrophic actions in the brain, including members
of the nerve growth factor family, basic fibroblast growth
factor, and epidermal growth factor. HGF and ¢-Met/HGF
receptor are expressed in various regions of the brain (98,

HGF HLP/MSP ?
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Fig. 2. Ligand-receptor relationship in molecules of HGF and
c-Met/HGF receptor families.

Vol. 119, No. 4, 1996

993

99). HGF activates Ras in neurons (100) and acts as a
potent survival factor for primary cultured neurons and
PC12 pheochromocytoma cells (99, 101, 102), all findings
to support the thesis that HGF belongs to the family of
neurotrophic factors. Likewise, HGF acts as a mitogen for
Schwann cells (103).

HGF in epithelial-mesenchymal interactions and de-
velopment

Interactions between epithelium and mesenchyme, e.g.,
epithelial-mesenchymal interactions mediate crucial
aspects of normal development, affecting tissue induction,
organogenesis, and morphogenesis of specific multicellular
structures. Development and morphogenesis of various
organs and tissues, including kidney, lung, liver, pancreas,
limb, tooth, mammary gland, hair follicle, etc. depend on
epithelial-mesenchymal interactions. A conceptual frame-

TABLE I Typical biological activities of HGF and target cells.
Biological activity Target cells
Mitogenic

Hepatocytes

Hepatoblast-like cells

Hepatic ductular epithehal cells

Renal tubular cells

Keratinocytes

Hair cells

Melanocytes

Gastric epithelal cells

Corneal epithehial cells

Bronchial epithelial cells

Alveolar type II epithehal cells

Thyroid cells

Mammary gland epithelial cells

Schwann cells

Pancreatic g cells

Placental cytotrophoblasts

Prostate epithelial cells

Osteoclast-like cells

Vascular endothehal cells

Articular chondrocytes

Hematopoietic progemtor cells

Gallbladder cancer cells, etc.
Motogenic

Renal epithelial cells

Hepatic ductular epithelial cells

Keratinocytes

Thyroid cell

Mammary gland epithelial cells

Vascular endothehal cells

Articular chondrocytes

Myogenic precursor cells

Oral squamous carcinoma cells

Gallbladder carcinoma cells

A431 epidermoid carcinoma, etc
Morphogenic

Renal epithelial cells

Hepatic epithelial cells

Mammary gland epithehal cells

Colon carcinoma cells, efc.
Promotion of cell survival

Neurons

PC12 rat pheochromocytoma cells
Tumor mhibition

Hepatoma cells (HepG2, etc)

B6/F1 melanoma cells

KB squamous carcinoma cells, etc.
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work of epithelial-mesenchymal interactions was estab-
lished in the 1950s and 1960s, but molecular mechanisms
responsible for these interactions have not been elucidated.
Recent extensive works on HGF have established that HGF
is a mesenchymal-derived mediator in epithelial-mesen-
chymal interactions.

During kidney development, the first interaction be-
tween epithelial ureteric bud and mesenchymal meta-
nephric blastema is essential for the development of the
kidney. Epithelial cells derived from ureteric bud form
branching collecting tubules and mesenchymal cells at the
tip of collecting tubules convert to epithelial cells that form
the nephron. During organogenesis of the kidney, c-Met/
HGF receptor mRNA is expressed in epithelial cells, while
HGF mRNA is expressed in mesenchymal cells in close
proximity to renal epithelial cells (24, 26). A specific
antibody against HGF inhibits both morphogenesis of the
kidney in organ culture system and differentiation of
metanephric mesenchymal cells into epithelial precursors
of the nephron (25, 26). Together with s vitro induction of
branching tubulogenesis by HGF, this factor is a mesenchy-
mal-derived morphogen for renal epithelial cells and is
involved in transdifferentiation from mesenchymal to
epithelial cells. Likewise, HGF and c¢-Met/HGF receptor
mRNA are expressed in mammary gland tissue, and HGF
potently promotes the formation of branching duct-like
structures by mammary gland epithelial cells in vitro (29-
31). Therefore, HGF may mediate inducing effects of
mesenchyme (or stroma) on mammary gland develop-
ment.

The potential participation of HGF in organogenesis was
also demonstrated by disruption of the HGF gene (27, 28).
In the homozygous mutant mice of HGF gene, embryos are
lethal, due to defected development of the placenta (28) or
both placenta and liver (27). Likewise, in c-met homozy-
gous mutant mouse embryos, development of the liver and
placenta was defected (89). These defects are in consistent
with the finding that HGF is a potent mitogen for placental
cytotrophoblasts (64), as well as hepatocytes. The essential
role of HGF in hver development has recently been
demonstrated using in vivo loss-of-function mutation in the
Xenopus embryo. Overexpression of mutant c-Met/HGF
receptor of tyrosine kinase-minus (TK--Met) in Xenopus
embryos resulted in liver defects and impaired develop-
ment of pronephros, gut, and skeletal morphogenesis in tail
regions (Aoki et al., submitted). These results indicate that
HGF and the c-Met/HGF receptor are highly conserved
molecules, at least with regard to development of the liver,
from amphibians to mammals. In contrast, in transgenic
mice that express HGF specifically in the liver, a new
population of small hepatocytes (presumably blastic he-
patocytes) appears in the liver (104), thereby indicating
that HGF may be involved in proliferation of hepatoblast-
like cells (61, 105).

Localization of HGF and c-Met/HGF receptor mRNA in
various tissues indicates that functional coupling between
HGF and the ¢c-Met/HGF receptor is important for devel-
opment, morphogenesis, and migration of cells in other
tissues, including limb, branchial arches, lung, tooth, and
bone. Figure 3 shows the in situ localization of HGF and
c-Met/HGF receptor mRNA in developing lung of day 13 of
the rat embryo. The c-Met/HGF receptor mRNA is speci-
fically localized in bronchial epithelial cells (Fig. 3, C and
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D), while HGF mRNA locates in surrounding mesenchymal
cells (Fig. 3, A and B). Antisense HGF oligonucleotide
specifically inhibits branching tubulogenesis of the develop-
ing lung in vitro (our unpublished data). Thus, HGF is a
mesenchymal-derived factor for branching morphogenesis
during lung development. Similarly, the functional cou-
pling between HGF and c-Met/HGF receptor supports
tooth development (32). The c-Met/HGF receptor is
expressed in epithelial tissue while HGF is expressed in
mesenchymal tissue in tooth germ, and antisense HGF
oligonucleotide specifically induces abnormal tooth mor-
phogenesis in organ culture system (32). Expression
pattern of HGF and c-met, and biological activities of HGF
implicate HGF in skeletal morphogenesis and chondrogene-
sis. HGF is mitogenic and motogenic for chondrocytes (75),
and HGF and c-met are expressed in chondrogenic regions,
including rib, limb joints, and branchial arches (33, 34). In
met ™'~ embryos, migration of myogenic precursor cells into
the limb bud, diaphragm, and tip of tongue is impaired, and
as a consequence, skeletal muscles of the limb and dia-
phragm do not form (89). These observations mean that
HGF is involved in migration of cells during development.
In the chick embryo, HGF is involved in early steps of
neural induction, presumably by inducing or maintaining

Fig 3 Expression of HGF and c-Met/HGF receptor mRNA in
developing rat lung. Localization of HGF mRNA (A, B) and c-Met/
HGF receptor mRNA (C, D) was analyzed by in situ hybridization
using day 13 rat embryo. B and D indicate bright field views for A and
C, respectively.

J Brochem.
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competence of the epiblast to respond to neural-inducing
signals (106-109).

Organotrophic roles

Regeneration of the liver is one of the most dramatic
phenomena in higher animals. When 70% of the liver is
resected, the cells in the remaining liver rapidly proliferate
and the original liver mass and functions are restored
within a week. As partial purification of HGF was originally
done using peripheral blood of partially hepatectomized
rats, HGF was considered to be a humoral hepatotrophic
factor which enhances liver regeneration. During the last 10
years, the hepatotrophic roles of HGF have been well-
established. HGF is now seen to have the role of organotro-
phic factor for regeneration of other tissues and organs ( 19-
23).

Liver injuries can be induced in rats or mice by means of
partial hepatectomy, ischemia, liver crush, or administra-
tion of hepatotoxins such as CCl, and «-naphthyl-isothio-
cyanate. Expression of HGF mRNA rapidly increases
following the onset of these injuries in the injured liver and
distant intact organs such as the lung and spleen. The liver
i8 composed of several types of cells, including paren-
chymal hepatocytes, sinusoidal endothelial cells, Kupffer
cells (liver macrophages), Ito (fat-storing) cells, and bile
duct epithelial cells. Cell fractionation and in situ hybridi-
zation revealed that HGF is expressed in non-parenchymal
stromal cells such as Kupffer cells, sinusoidal endothelial
cells, and Ito cells, but not in parenchymal hepatocytes,
indicating that this factor acts through a paracrine mecha-
nism. Additionally, up-regulation of HGF mRNA in intact
organs, together with a marked increase in blood HGF
levels, means that an endocrine-related mechanism is
likely to be functioning in liver regeneration. Elevated
levels of plasma HGF were also well-demonstrated in
patients with hepatic diseases (110, 111).

Based on a wide spectrum in target cell specificity of
HGF, the involvements of HGF in regeneration of other
organs was noted. Expression of HGF is rapidly induced
after injuries in the kidney and lung (112, 113). In analogy
with the case of liver injury, non-epithelial stromal cells
produce HGF. Taken together with in vitro and in vivo
mitogenic actions of HGF for renal (114, 115) and lung
epithelial cells (60, 116), HGF seems to trigger regenera-
tion of these organs at least through a paracrine mecha-
nism. Therefore HGF is a stromal-derived mediator re-
sponsible for organ regeneration. Changes in blood HGF
levels were noted in patients with renal diseases (117) and
in patients treated by renal transplantation (118).

Expression of HGF is regulated by various factors.
Interleukin-1, platelet-derived growth factor, acidic and
basic fibroblast growth factor, epidermal growth factor,
prostaglandins, and heparin are potent inducers of HGF
expression (119-121). In contrast, transforming growth
factor-£1 and glucocorticoids suppress the gene expression
of HGF (122, 123). Although these regulatory molecules
are likely to have distinct roles, the regulatory network for
expression of HGF may be involved not only in organ
regeneration but also in epithelial-mesenchymal and
tumor-stromal interactions during organogenesis and
tumor progression (see below), respectively.

Direct evidence for the organotrophic roles of HGF has
been obtained from in wvivo studies and these studies
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suggested potential therapeutic strategies using recom-
binant HGF. Administration of HGF to experimental
animals with liver injury strongly enhanced liver regenera-
tion (124-126), and importantly, HGF suppressed the
onset of hepatic dysfunction (124, 127). Likewise, HGF
enhances renal regeneration and suppresses the onset of
acute renal failure caused by renal toxins, renal ischemia,
or unilateral nephrectomy (114, 115). More importantly,
HGF prevented the onset of liver fibrosis/cirrhosis and
abrogated lethal hepatic dysfunction due to chronic liver
injury (128). Mitogenic, motogenic, and morphogenic
activities, all of which are required for reconstruction of
tissue architecture, no doubt are responsible for the organo-
trophic functions of HGF.

HGF in tumor-stromal interactions

Because of its profound effects on cell growth, motility,
and angiogenesis, HGF is implicated in the growth, inva-
sion, and metastasis of tumor cells. As establishment of an
autocrine loop of growth factors and their receptors is
involved in tumorigenic transformation of cells, gene
transfer experiments indicate that autonomous activation
of c-Met/HGF receptor results in tumorigenic transforma-
tion (129-132). Stable transfection of the HGF gene in
met-expressing epithelial cells (130-132), and the c-met
gene in HGF-producing fibroblasts (129) both confer in
vivo tumorigenicity in these cells. Such an autocrine
activation of the Met/HGF receptor is found in certain
tumor cells derived from cancer patients (87, 133), how-
ever, most carcinoma cells derived from epithelial tissues
express ¢c-Met/HGF receptor but do not express the HGF
gene. This may mean that autocrine activation of the Met/
HGF receptor is restricted to certain species of tumor cells.

Studies indicate the particular importance of stromal-
derived HGF in invasion and metastasis of carcinoma cells.
Growth and invasive potentials of tumor cells are influ-
enced by their interactions with normal stromal fibroblasts
(134-136). In vitro invasion of carcinoma cells into the
collagen gel matrix was induced in co-cultivation with
stromal fibroblasts (135), and fibroblasts can produce
migration-stimulating factor (137). Although molecular
mechanisms underlying these tumor-stromal interactions
are of current interest to tumor biologists, one fibroblast-
derived invasion factor is known to be HGF (88) and HGF
induces invasion of various types of carcinoma cells in vitro
(78, 79, 81, 86, 87). In addition to stromal fibroblast-
derived HGF, we recently found that carcinoma cells
secrete inducing factors for HGF expression in fibroblasts
(Matsumoto et al., submitted) and the presence of such
inducing factor(s) was also noted by other workers (138,
139). Therefore, HGF seems to be a predominant stromal-
derived invasion factor for carcinoma cells. The mutual
interaction between HGF-expressing stromal cells and
Met-expressing carcinoma cells mediated by HGF and its
inducers may result in an acquisition of invasive phenotype
in tumor cells. The epithelial-mesenchymal (or -stromal)
interactions mediated by HGF are likely to be functional in
tumor-stromal interactions, as well as in tissue regenera-
tion.

Perspective and future directions
The biological and physiological functions of HGF have
been much greater than expected (Fig. 4). However, much

¥202 Yyate 0z uo 1senb Aq 1128¥8/16S/¥/6 | L/a1onte/ql/woo dno-olwspede//:sdiy wolj papeojumoq



996

Fetus

L)\
o+

Branching
morphogenesis

¥
£

y

s

Skeletal
morphogenesis

-
(- . P = —
- -‘ <§/
- (- ) = -
—= = .

Cell migration

g

Organ Regeneration

o
f. . »Lié/_, S
(@Xs

Tumor Invasion

Fig. 4. Plelotropic roles of HGF during embryogenesis, organ
regeneration, and tumor progression.

work remains to be determined how HGF exerts its highly
diversified activities and how HGF is involved in con-
structing an organized multicellular tissue structures (e.g.,
branching tubules).

Target cells of HGF are distributed widely and specific
biological roles of HGF for the development and homeo-
stasis of each tissue need to be studied. Although localiza-
tion and in vitro analysis indicate that HGF may well play
a neurotrophic role in the brain, specific roles of HGF for
the maintenance and regeneration of the central nervous
system, and also for the inductive processes, development,
and network formation of neural cells are of general
interest.

Because of its organotrophic functions, HGF may well
have therapeutic potential for disorders of the liver and
kidney. HGF is highly effective for chronic and often
incurable hepatic disease, e.g., liver fibrosis/cirrhosis.
Application of the HGF gene as a therapeutic for chronic
diseases may be feasible. The generation and application of
antagonistic molecules of HGF may prove to be therapeutic
in inhibiting tumor invasion and metastasis.

The biological functions of HLP/MSP and Ron are still
uncharacterized. Identification of novel members in HGF
and the Met family, and elucidation of biological functions
of HLP/MSP will shed light on the biological significance of
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HGF family molecules in embryogenesis, organogenesis,
and tissue regeneration.

Due to space limitation, the papers of some scientists may not have
been cited. Nevertheless, we are entirely grateful to all our colleagues
for “working on HGF.” Gratitude is extended to M. Ohara for helping
us to write up this review.
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